US009293667B2 # (12) United States Patent David et al. ## (54) SYSTEM AND METHOD FOR SELECTED PUMP LEDS WITH MULTIPLE PHOSPHORS (75) Inventors: Aurelien J. F. David, San Francisco, CA (US); Arpan Chakraborty, Fremont, CA (US); Michael Ragan Krames, Los Altos, CA (US); Troy Trottier, Fremont, CA (US) (73) Assignee: Soraa, Inc., Fremont, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (21) Appl. No.: 13/211,145 (22) Filed: Aug. 16, 2011 (65) Prior Publication Data US 2012/0043552 A1 Feb. 23, 2012 #### Related U.S. Application Data - (60) Provisional application No. 61/502,212, filed on Jun. 28, 2011. - (51) Int. Cl. H01L 27/15 (2006.01) H01L 33/32 (2010.01) H01L 33/50 (2010.01) C09K 11/08 (2006.01) C09K 11/77 (2006.01) H01L 25/075 (2006.01) H01L 33/54 (2010.01) - (52) U.S. Cl. ### (45) **Date of Patent: Mar. 22, 2016** (58) Field of Classification Search (10) Patent No.: US 9,293,667 B2 See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS | 4,727,003 A | 4 | * | 2/1988 | Ohseto et al 428/690 |) | |-------------|---|---|--------|-----------------------------|---| | 4,918,497 A | 4 | * | 4/1990 | Edmond 257/77 | 7 | | 4,946,621 | 4 | * | 8/1990 | Fouassier et al 252/301.4 F | Ł | | | | | (Con | tinued) | | #### FOREIGN PATENT DOCUMENTS | CN | 101009347 | 3/1987 | |----|-----------|----------| | CN | 1538534 | 10/2004 | | | (Co | ntinued) | #### OTHER PUBLICATIONS USPTO Office Action for U.S. Appl. No. 12/491,176 dated Jul. 19, 2012. (Continued) Primary Examiner — Stephen F Husar (74) Attorney, Agent, or Firm — Saul Ewing LLP #### (57) ABSTRACT An LED pump light with multiple phosphors is described. LEDs emitting radiation at violet and/or ultraviolet wavelengths are used to pump phosphor materials that emit other colors. The LEDs operating in different wavelength ranges are arranged to reduce light re-absorption and improve light output efficiency. #### 25 Claims, 6 Drawing Sheets ### US 9,293,667 B2 Page 2 | (56) | Referen | nces Cited | 9,046,227 B2 *
2001/0022495 A1 | 6/2015
9/2001 | David F21K 9/56 | |--------------------------------|-------------------|---|-------------------------------------|------------------|-----------------------------------| | U.S. | PATENT | DOCUMENTS | 2001/0055208 A1 | 12/2001 | Kimura | | | | | 2002/0088985 A1 | | Komoto et al. | | 5,077,161 A * | | Law | 2002/0171092 A1
2003/0080345 A1 | 5/2003 | Goetz et al.
Motoki et al. | | 5,110,931 A *
5,120,051 A * | | Dietz et al 546/37
Greenberg | 2003/0145783 A1 | | Motoki et al. | | 5,142,387 A | | Shikama et al. | 2004/0016938 A1* | | Baretz et al 257/100 | | 5,208,462 A * | | O'Connor et al 250/493.1 | 2004/0036079 A1
2004/0066140 A1 | | Nakada et al.
Omoto | | 5,211,467 A * 5,237,182 A * | | Seder | 2004/0000140 A1
2004/0195598 A1* | 10/2004 | Tysoe et al 257/233 | | 5,369,289 A * | | Tamaki et al | 2004/0201598 A1 | 10/2004 | | | 5,518,808 A * | | Bruno et al 428/323 | 2004/0207998 A1
2004/0227149 A1 | | Suehiro et al.
Ibbetson et al. | | 5,535,230 A * 5,637,531 A | | Abe 372/50.23
Porowski et al. | 2004/022/149 A1
2005/0084218 A1 | | Ide et al. | | 5,679,152 A | | Tischler et al. | 2005/0109240 A1 | 5/2005 | Maeta et al. | | 5,770,887 A * | | Tadatomo et al 257/613 | 2005/0179376 A1 | | Fung et al.
Lin et al. | | 5,959,316 A *
5,962,971 A * | | Lowery | 2005/0199899 A1
2005/0218780 A1 | 10/2005 | | | 6,137,217 A * | | Pappalardo et al 313/312 | 2005/0224830 A1 | 10/2005 | Blonder et al. | | 6,234,648 B1* | 5/2001 | Borner et al 362/235 | 2005/0247260 A1
2005/0285128 A1 | | Shin et al. | | 6,275,145 B1 | | Rogozinski
Hiraishi | 2005/0285128 A1
2006/0038542 A1 | | Scherer et al.
Park et al. | | 6,335,771 B1
6,413,627 B1 | | Motoki et al. | 2006/0049416 A1* | 3/2006 | Baretz et al 257/95 | | 6,440,823 B1 | | Vaudo et al. | 2006/0068154 A1* | | Parce et al 428/76 | | | | Srivastava et al 340/815.4
Motoki et al. | 2006/0097385 A1
2006/0138435 A1 | | Negley
Tarsa et al. | | 6,468,347 B1
6,468,882 B2 | | Motoki et al. | 2006/0175624 A1 | | Sharma et al. | | 6,488,767 B1 | 12/2002 | Xu et al. | 2006/0205199 A1 | | Baker et al. | | 6,498,355 B1 | | Harrah et al. | 2006/0208262 A1
2007/0018184 A1* | | Sakuma et al. Beeson et al 257/98 | | 6,504,301 B1*
6,559,075 B1 | | Lowery 313/512
Kelly et al. | 2007/0086916 A1 | | LeBoeuf et al. | | 6,600,175 B1* | | Baretz et al 257/100 | 2007/0120141 A1 | | Moustakas et al. | | 6,621,211 B1 | | Srivastava et al. | 2007/0126023 A1
2007/0181895 A1 | 8/2007 | Haskell et al. | | 6,635,904 B2
6,642,652 B2* | | Goetz et al 313/512 | 2007/0210074 A1 | | Maurer et al. | | 6,853,010 B2 | | Slater, Jr. et al. | 2007/0228404 A1 | | Tran et al. | | 6,956,246 B1 | | Epler et al. | 2007/0231963 A1
2007/0272933 A1 | | Doan et al.
Kim et al. | | 6,967,116 B2
7,009,199 B2 | 11/2005
3/2006 | | 2008/0083741 A1 | | Giddings et al. | | 7,033,858 B2 | 4/2006 | Chai et al. | 2008/0087919 A1 | | Tysoe et al. | | 7,083,302 B2 * | | Chen et al 362/231 | 2008/0149166 A1
2008/0149949 A1 | | Beeson et al.
Nakamura et al. | | 7,091,661 B2
7,113,658 B2 | | Ouderkirk et al.
Ide et al. | 2008/0149959 A1 | | Nakamura et al. | | 7,220,324 B2 | | Baker et al. | 2008/0192791 A1 | | Furukawa et al. | | 7,253,446 B2 | | Sakuma et al. | 2008/0194054 A1
2008/0210958 A1 | | Lin et al.
Senda et al. | | 7,318,651 B2
7,332,746 B1 | | Chua et al.
Takahashi et al. | 2008/0224597 A1* | | Baretz et al 313/503 | | 7,358,543 B2 | | Chua et al. | 2008/0261341 A1* | | Zimmerman et al 438/33 | | 7,361,938 B2 | | Mueller et al. | 2008/0274574 A1
2009/0050908 A1 | 11/2008 | Yun
Yuan et al. | | 7,419,281 B2
7,521,862 B2 | | Porchia et al.
Mueller et al. | 2009/0087775 A1 | 4/2009 | Kunou et al. | | 7,615,795 B2* | | Baretz et al 257/98 | 2009/0146170 A1 | 6/2009 | Zhong et al. | | 7,646,033 B2 | | Tran et al. | 2009/0173958 A1
2009/0207873 A1 | | Chakraborty et al.
Jansen | | 7,737,457 B2 * 7,791,093 B2 | | Kolodin et al 257/98
Basin et al. | 2009/0250686 A1 | | Sato et al. | | 7,884,538 B2 | | Mitsuishi et al. | 2009/0252191 A1 | | Kubota et al. | | 7,902,564 B2 | | Mueller-Mach et al. | 2009/0273005 A1
2009/0302338 A1 | 11/2009 | Nagai et al. | | 7,906,793 B2
7,923,741 B1 | | Negley
Zhai et al. | 2009/0309110 A1 | | Raring et al. | | 7,943,945 B2 * | | Baretz et al 257/98 | 2009/0315480 A1 | | Yan et al. | | 8,044,412 B2 | | Murphy et al. | 2009/0321778 A1
2010/0001300 A1 | | Chen et al.
Raring et al. | | 8,124,996 B2
8,203,161 B2 | | Raring et al.
Simonian et al. | 2010/0001300 A1
2010/0006873 A1 | | Raring et al. | | 8,207,554 B2 | 6/2012 | | 2010/0025656 A1 | | Raring et al. | | 8,269,245 B1 | 9/2012 | | 2010/0044718 A1
2010/0104495 A1 | | Hanser et al.
Kawabata et al. | | 8,299,473 B1
8,310,143 B2 | | D'Evelyn et al.
Van De Ven et al. | 2010/0117106 A1 | | Trottier | | 8,362,603 B2 | 1/2013 | Lim et al. | 2010/0149814 A1 | | Zhai et al. | | 8,459,840 B2 * | | Ishimori et al 362/293 | 2010/0258830 A1 | | Ide et al. Krames et al 257/98 | | 8,519,437 B2
8,558,265 B2 | | Chakraborty
Raring et al. | 2010/0289044 A1*
2010/0290208 A1 | 11/2010 | | | 8,576,147 B2 | | Karing et al.
Koyama et al. | 2010/0291313 A1 | 11/2010 | | | 8,618,560 B2 | 12/2013 | D'Evelyn et al. | 2010/0327291 A1 | 12/2010 | Preble et al. | | 8,704,258 B2 | | Tasaki et al. | 2011/0038154 A1* | 2/2011
3/2011 | Chakravarty et al 362/249.02 | | 8,740,413 B1* | 0/2014 | Krames H01L 25/0753
257/98 | 2011/0069490 A1
2011/0103064 A1* | | Coe-Sullivan et al 362/293 | | 8,933,644 B2* | 1/2015 | David F21K 9/56
257/98 | 2011/0108865 A1
2011/0121331 A1 | 5/2011 | Aldaz et al.
Simonian et al. | #### (56) References Cited #### U.S. PATENT DOCUMENTS | 2011/0186874 A1 | 8/2011 | Shum | |------------------|---------|----------------------| | 2011/0186887 A1 | | Trottier et al. | | | | | | 2011/0215348 A1 | 9/2011 | Trottier et al. | | 2011/0279998 A1 | 11/2011 | Su et al. | | 2011/0291548 A1* | 12/2011 | Nguyen et al 313/501 | | 2011/0317397 A1 | 12/2011 | Trottier et al. | | 2012/0235201 A1 | 9/2012 | Shum | | 2013/0082292 A1 | 4/2013 | Wei et al. | | 2014/0119024 A1 | 5/2014 | Yu et al. | #### FOREIGN PATENT DOCUMENTS | CN | 1702836 | 11/2005 | |----|----------------|---------| | CN | 101099245 | 1/2008 | | CN | 101171692 | 4/2008 | | EP | 2267190 | 12/2010 | | JP | 2002-252371 | 9/2002 | | JP | 2004-207519 | 7/2004 | | JP | 2004-320024 | 11/2004 | | JP | 2005-244226 | 9/2005 | | JP | 2003-101081 | 5/2006 | | JP | 2006-186022 | 7/2006 | | JP | 2006-520095 | 8/2006 | | JP | 2006-308858 | 11/2006 | | JP | 2008-091488 | 4/2008 | | JP | 2008-159606 | 7/2008 | | JP | 2008-192797 | 8/2008 | | JP | 2001-501380 | 10/2008 | | JP | 2009-200337 | 3/2009 | | JP | 2009-135306 | 6/2009 | | JP | 2009-543335 | 12/2009 | | JP | 2010-535403 | 11/2010 | | JР | 2006-257290 | 12/2010 | | JР | 2007-287678 | 1/2011 | | JР | 2007-188962 | 7/2011 | | WO | WO 2006/068141 | 6/2006 | | WO | WO 2006/123259 | 11/2006 | | WO | WO 2007/091920 | 8/2007 | | WO | WO 2009/013695 | 1/2009 | | WO | WO 2009/066430 | 5/2009 | | WO | WO 2010/150880 | 12/2010 | | WO | WO 2012/127349 | 9/2012 | | WO | WO 2012/164426 | 12/2012 | #### OTHER PUBLICATIONS USPTO Office Action for U.S. Appl. No. 13/482,956 dated Aug. 17, 2012 Search and Examination report for application PCT/US2011/048499 (Feb. 14, 2012). Iso et al., 'High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-Plane Bulk GaN Substrate,' Japanese Journal of Applied Physics, 2007, vol. 46, No. 40, pp. L960-L962. Sato et al., 'Optical Properties of Yellow Light-Emitting Diodes Grown on Semipolar (1122) Bulk GaN Substrate,' Applied Physics LetterS, vol. 92, No. 22, 2008, pp. 221110-1-221110-3. USPTO
Office Action for U.S. Appl. No. 12/481,543 dated Jun. 27, 2011. USPTO Office Action for U.S. Appl. No. 12/491,176 dated Mar. 1, 2012. USPTO Office Action for U.S. Appl. No. 12/879,784 dated Jan. 25, 2012 USPTO Notice of Allowance for U.S. Appl. No. 12/879,784 dated Apr. 3,2012. USPTO Office Action for U.S. Appl. No. 12/880,889 dated Feb. 27, 2012. USPTO Office Action for U.S. Appl. No. 12/914,789 dated Oct. 12, 2011. USPTO Office Action for U.S. Appl. No. 12/914,789 dated Feb. 24, 2012. USPTO Notice of Allowance for U.S. Appl. No. 12/914,789 dated May 17, 2012. USPTO Office Action for U.S. Appl. No. 13/019,897 dated Mar. 30, 2012. USPTO Office Action for U.S. Appl. No. 12/880,889 dated Sep. 19, 2012. USPTO Office Action for U.S. Appl. No. 13/025,833 dated Jul. 12, 2012 USPTO Office Action for U.S. Appl. No. 13/482,956 dated Feb. 14, 2013. USPTO Office Action for U.S. Appl. No. 12/887,207 dated May 23, 2012, 14 pages. USPTO Office Action for U.S. Appl. No. 12/887,207 dated Jan. 7, 2013, 20 pages. USPTO Office Action for U.S. Appl. No. 12/887,207 dated May 10, 2013, 20 pages. USPTO Office Action for U.S. Appl. No. 12/887,207 dated Aug. 23, 2013. 18 pages. USPTO Office Action for U.S. Appl. No. 13/019,521 dated Feb. 3, 2012, 13 pages. USPTO Office Action for U.S. Appl. No. 13/019,521 dated Nov. 14, 2012, 12 pages. USPTO Office Action for U.S. Appl. No. 13/328,978 dated May 15, 2013, 25 pages. Bockowski, 'Directional crystallization of GaN on high-pressure solution grown substrates by growth from solution and HVPE', Journal of Crystal Growth, 2002, vol. 246, 3-4, pp. 194-206. Hiramatsu et al., 'Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (Facelo)', Journal of Crystal Growth, vol. 221, No. 1-4, Dec. 2000, pp. 316-326. Kelly et al., 'Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitay and Laser-Induced Liftoff', Japanese Journal of Applied Physics, vol. 38, 1999, pp. L217-L219. Porowski et al., 'Thermodynamical properties of III-V nitrides and crystal growth of GaN at high N2 pressure', Journal of Crystal Growth, 1997, vol. 178, pp. 174-188. Communication from the German Patent Office re 048499_11 2011 102 386.3, dated May 14, 2013, 8 pages. Xu et al., 'Acid Etching for accurate determination of dislocation density in GaN', J. Electronic Materials, 2002, vol. 31, pp. 402-405. Xu et al., 'Growth and Characterization of Low Defect GaN by Hydride Vapor Phase Epitaxy', Journal of Crystal Growth, vol. 246, Dec. 2002, pp. 223-229 (Abstract). Communication from the Japanese Patent Office re 2012552083 dated Dec. 26, 2013, (3 pages). Communication from the Japanese Patent Office re 2013-525007 dated Mar. 28, 2014, (4 pages). USPTO Office Action for U.S. Appl. No. 12/880,889 dated Oct. 1, 2013 (19 pages). USPTO Office Action for U.S. Appl. No. 13/135,087 dated Sep. 27, 2013 (7 pages). USPTO Office Action for U.S. Appl. No. 13/904,237 dated May 22, 2014 (13 pages). Chinese Office Action From Chinese Patent Application No. 200980134723.8 dated Nov. 1, 2012, 22 pgs. (With Translation). Communication from the Japanese Patent Office re 2011-522148 dated Mar. 14, 2013, 5 pages. Communication from the Japanese Patent Office re 2011-522148, dated Oct. 22, 2013, 6 pages. Communication from the Japanese Patent Office re 2012552083 dated Dec. 26, 2013, 3 pages. Communication from the German Patent Office re 11 2011 102 386.3 dated May 14, 2013, 93 pages. Weaver et al., 'Optical Properties of Selected Elements', Handbook of Chemistry and Physics, 94th Edition, 2013-2014, pp. 12-126-12- USPTO Office Action for U.S. Appl. No. 12/534,829 dated Apr. 19, $2011,\,8$ pages. USPTO Notice of Allowance for U.S. Appl. No. 12/534,829 dated Oct. 28, 2011, 7 pages. USPTO Notice of Allowance for U.S. Appl. No. 12/534,829 dated Dec. 5, 2011, 7 pages. USPTO Notice of Allowance for U.S. Appl. No. 12/534,829 dated Dec. 21, 2011, 4 pages. #### (56) References Cited #### OTHER PUBLICATIONS USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated May 17, 2012, 19 pages. USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated Jun. 5, 2012, 16 pages. USPTO Notice of Allowance for U.S. Appl. No. 12/754,886 dated Jun. 20, 2012, 14 pages. USPTO Office Action for U.S. Appl. No. 12/880,889 dated Oct. 1, 2013, 19 pages. USPTO Office Action for U.S. Appl. No. 12/887,207 dated May 23, 2012, 13 pages. USPTO Office Action for U.S. Appl. No. 12/887,207 dated Jan. 7, 2013, 19 pages. USPTO Office Action for U.S. Appl. No. 12/887,207 dated May 10, 2013, 19 pages. USPTO Office Action for U.S. Appl. No. 12/887,207 dated Aug. 23, 2013, 17 pages. USPTO Office Action for U.S. Appl. No. 13/019,521 dated Feb. 3, 2012, 12 pages. USPTO Office Action for U.S. Appl. No. 13/019,521 dated Nov. 14, 2012, 11 pages. USPTO Office Action for U.S. Appl. No. 13/135,087 dated Sep. 27, 2013, 7 pages. USPTO Office Action for U.S. Appl. No. 13/328,978 dated May 15, 2013, 24 pages. USPTO Office Action for U.S. Appl. No. 13/328,978 dated Sep. 26, 2013, 25 pages. USPTO Office Action for U.S. Appl. No. 13/357,315 dated Oct. 15, 2013, 12 pages. USPTO Office Action for U.S. Appl. No. 13/360,535 dated May 10, 2013, 13 pages. USPTO Notice of Allowance for U.S. Appl. No. 13/360,535 dated Jun. 10, 2013, 8 pages. USPTO Notice of Allowance for U.S. Appl. No. 13/623,788 dated Aug. 20, 2013, 11 pages. Madelung, 'III-V Compounds', Semiconductors: Data Handbook, Springer Verlag, Berlin-Heidelberg, vol. 3, Ch. 2, 2004, pp. 71-172. Weaver et al., 'Optical Properties of Selected Elements', Handbook of Chemistry and Physics, vol. 94, 2013-2014, pp. 12-116-12-140. USPTO Office Action for U.S. Appl. No. 13/135,087 dated Aug. 15, 2014 (12 pages). USPTO Office Action for U.S. Appl. No. 13/357,315 dated Dec. 31, 2014 (22 pages). USPTO Office Action for U.S. Appl. No. 14/097,481 dated Dec. 31, 2014 (11 pages). Dulda et al., "Photoluminescence and morphology of flux grown BAM phosphor using a novel synthesis method", Journal of Ceramic Processing Research, 2009, vol. 10, No. 6, p. 811-816. Manh et al., "Effects of Annealing on the Luminescence Properties of BaMgA110O17:Eu2+ Blue Emitting Phosphor", International Journal of Engineering and Innovative Technology (IJEIT), Dec. 2013, vol. 3, Issue 6, p. 67-70. Ravichandran et al., "Crystal chemistry and luminescence of the EU2+-active alkaline earth aluminate phosphors", Displays, 1999, p. 197-203. Wang et al., "Synthesis of Nanosized Luminescent Materials and Their Photoluminescence under VUV Excitation", Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications, INTECH, Apr. 2011, Chapter 7, p. 121-154. * cited by examiner FIG. 2 FIG. 3 FIG. 5 FIG. 6 FIG. 7 FIG. 8 | | 4% | 2% | %9 | |------------|----------|----------|----------| | × | 0.466 | 0.464 | 0.462 | | y | 0.421 | 0.419 | 0.416 | | CCT[K] | 2695.385 | 2701.813 | 2708.297 | | Duv | 0.003 | 0.003 | 0.002 | | CRI (Ra) | 83.157 | 83.291 | 83.377 | | LER [Im/W] | 304.833 | 302.776 | 300.748 | | | | | | | | | | | | R1 | 97.818 | 95.698 | 97.567 | | R2 | 91.112 | 91.132 | 91.125 | | R3 | 75.120 | 75.337 | 75.528 | | R4 | 90.018 | 90.643 | 91.078 | | R5 | 90.785 | 90.530 | 90.259 | | R6 | 73.158 | 73.136 | 73.104 | | R7 | 79.979 | 80.331 | 80.608 | | R8 | 67.268 | 67.518 | 67.749 | | R9 | 36.008 | 36.469 | 36.938 | | R10 | 71.359 | 71.291 | 71.199 | | R11 | 75.511 | 75.429 | 75.292 | | R12 | 49.258 | 47.448 | 45.739 | | R13 | 94.652 | 94.529 | 94.389 | | R14 | 85.554 | 85.673 | 85.780 | | | | | | | | | | | | | | | | | u, | 0.262 | 0.262 | 0.262 | | '> | 0.532 | 0.531 | 0.530 | #### SYSTEM AND METHOD FOR SELECTED PUMP LEDS WITH MULTIPLE PHOSPHORS #### RELATED APPLICATIONS This application claims the benefit under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/502,212, filed on Jun. 28, 2011, which is incorporated by reference in its entirety. #### BACKGROUND OF THE INVENTION This invention is directed to lighting systems, and in particular, to light emitting diodes (LED) pump light with multiple phosphors. Solid state lighting is known. Solid state lighting relies upon semiconductor materials to produce light, e.g. by light emitting diodes. Red LEDs are known and use Aluminum Indium Gallium Phosphide or AlInGaP semiconductor materials, among others. Most recently, Shuji Nakamura pio- 20 a pixelated phosphor composition; neered the use of InGaN materials to produce LEDs emitting blue light. The blue LEDs led to other innovations such as solid state white lighting and the blue laser diode. High intensity UV, blue, and green LEDs based upon the InGaN material system have been proposed and demon- 25 according to embodiments of the present invention. strated. Efficiencies have typically been highest in the UVviolet, but drop off as the emission wavelength is increased to blue or green. Unfortunately, achieving high intensity, highefficiency InGaN-based green LEDs has been problematic. Additionally, InGaN-based LEDs have been costly and difficult to produce on a wide-scale in an efficient manner. Although successful, solid state lighting techniques must be improved for full exploitation of their potential. #### SUMMARY OF THE INVENTION This invention provides pump LED light of selected wavelengths with multiple phosphors. In various embodiments, LEDs emitting radiation at violet and/or ultraviolet wavelengths are used to pump phosphor materials that emit light of 40 a different frequency. The pump LEDs are characterized by having a peak emission wavelength of about 405 to 430 nm under normal operation. They are employed in conjunction with at least a blue phosphor with strong absorption at wavelengths beyond about 405 nm. In certain embodiments, LEDs 45 operating in different wavelength ranges are arranged in a combination to reduce radiation re-absorption and improve light-output efficiency. This invention provides an optical device which includes a mounting member and at least one light emitting
diode over- 50 lying a portion of the mounting member. The LED includes a gallium and nitrogen containing substrate having a surface region and a gallium and nitrogen containing buffer layer overlying the surface region. An active region emits electromagnetic radiation with peak wavelengths in a range from 55 about 405 nm to about 430 nm. The LED includes electrical contacts to supply the junction region electrical current. The device additionally includes a mixture of three phosphor materials within a binder material. The mixture of phosphor materials is disposed within a vicinity of the LED interacts 60 with the electromagnetic radiation from the LED to convert the electromagnetic radiation to a wavelength range between about 440 to 650 nanometers. In another embodiment the device includes blue phosphor material within a vicinity of the LED device with strong absorption at wavelengths longer 65 than about 405 nm. The active region is configured to emit electromagnetic radiation whose peak is in the range of about 2 405 to 430 nanometers while maintaining an internal quantum efficiency of about 70% and greater at a current density of at least 100 A/cm² in an operating temperature range from about 100° C. to about 150° C. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates the efficiency characteristics of LEDs emitting at various wavelengths; FIGS. 2 and 3 illustrate absorption properties of blue phosphors and the corresponding white LED performance depending on the emission wavelength of the LED; FIG. 4 illustrates an LED with peak emission in the range of about 405-430 nm pumping blue, red, and green phosphors. FIG. 5 illustrates carrier spreading in multi-quantum well LEDs emitting at 450 nm (left) and 420 nm (right); FIG. 6 illustrates pump LEDs configured as an array; FIG. 7 illustrates pump LEDs configured as an array, with FIG. 8 illustrates pump LEDs configured as an array with two LED emission wavelengths; and FIG. 9 is a simplified diagram illustrating emission spectrum of LED a two-phosphor violet pumped white LED #### DETAILED DESCRIPTION OF THE PREFERRED **EMBODIMENTS** This invention is directed to lighting systems and to the provision of LED pump light with multiple phosphors. LEDs emitting radiation at violet and/or ultraviolet wavelengths are used to pump phosphor materials that emit different colors. Preferably the pump LEDs have a peak emission wavelength 35 of about 405 to 430 nm under normal operating conditions. As mentioned above, conventional LED lights sources are often inadequate. For example, one of the most-common approaches to generating high-CRI white LED light consists of LED devices emitting in the 440-470 nm range (often referred to as pump LEDs), which excite two phosphors: a yellow/green phosphor and a red phosphor. This approach is convenient because some yellow/green phosphors, such as Ce:YAG, exhibit high quantum efficiency. Unfortunately, this approach is also constraining YAGbased phosphors can only be efficiently excited in a narrow spectral range around 460 nm, limiting the wavelength range of the pump LEDs that can be employed. While high internal quantum efficiency (IQE) LED devices can be created at such wavelengths at low current density, their IQE falls rapidly at high current density. This is due to two effects: (a) the presence of large piezoelectric fields which reduce the carrier overlap and therefore increase the carrier lifetime, shifting the IQE curve to lower current density (ref); and (b) the challenges associated with thick active regions emitting around 445 nm (due to both strain-related growth limitations with thick InGaN layers and the difficulty with carrier spreading in a multi-quantum-well system). FIG. 1 illustrates the efficiency behavior of LEDs emitting at various wavelengths. Short-wavelength LEDs (415-430 nm) maintain efficiency at much higher carrier densities than long-wavelength LEDs (445 nm and above). FIG. 1 is taken from "Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes", A. David et al, Appl. Phys. Lett. 97, 033501 (2010), which describes the increase of the polarization fields in longerwavelength LEDs. The article "Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes", A. David et al, *Appl. Phys. Lett.* 92, 053502 (2008), discusses the difficulty in spreading carriers between the quantum wells in 450 nm-pump LEDs. The blue light from the pump LED contributes to the white spectrum. Therefore, the amount of blue light that is transmitted by the phosphors needs to be well-controlled to achieve a given CCT. Variations in the wavelength of the pump LED need to be accounted for in the phosphor composition/loading. Accounting for the differences in wavelength can be a challenging task when manufacturing white LEDs. State-of-the-art results for 440-nm pump LEDs can be found in the article "White light emitting diodes with super-high luminous efficacy", Y. Narukawa et al, J. Phys. D 43, 354002 (2010). At room temperature and a current density of about 100 A/cm², an external quantum efficiency of 65% is reported. Assuming an extraction efficiency of about 90% and a performance drop of about 10% between room temperature and a 100 C. junction temperature, this corresponds to an IQE of about 65% at 100 A/cm² and 100 C. Another conventional approach consists in using a pump LED whose emission peak is in the 395-405 nm range to pump a system of three or four phosphors. This is advantageous because 400 nm pump LEDs typically retain higher performance at a higher current density than 445 nm pump LEDs, presumably due to the lower piezoelectric fields and to the thick active regions. Employing an LED emitter whose final spectra is minimally affected (in color or brightness) by the presence or absence of the emitter wavelength in the final spectra allows 30 for very stable performance over drive currents and temperatures. Proper selection of color-stable phosphor materials for the devices range of operation (e.g. a 405 nm emitter's spectral weight) is only 1.5% that of a 450 nm emitter. A 420 nm emitter's spectral weight is still only 10% of that of a 450 nm 35 emitter. Stability in color and flux of a finished phosphor-converted LED is increased dramatically over a traditional blue pump device where as much as 20% of the final spectrum is comprised of the underlying emitter at 450 nm. The elimination of the need to target a certain amount of 40 emitter light leakage in the final spectra also offers improved color yield in a manufacturing environment. The manufacturing phosphor deposition process for an about 405 nm to 430 nm pump device can accept more process variance without sacrificing large-volume color repeatability. In turn, this 45 allows a manufacturing process to run with higher throughput without loss in repeatability. Use of three or more component colors (chip emission and at least two phosphors) offers a larger tunable color gamut for a phosphor-converted LED device than does a two-component color system. A large range of tunable colors and color rendering indices become available. A two-color component white LED will only have one possible cross section with the Planckian curve (one point to achieve a balanced white spectrum) whereas a three or more color system allows for infinite 55 tunability along the Planckian curve. This approach, however, suffers from various limitations: 1. The Stokes loss between the pump wavelengths and the phosphors wavelengths is larger, so more energy is lost in the phosphor down-conversion process. The comparatively 60 larger band gap of a 400 nm pump LED causes a larger operation voltage. The reduced carrier confinement in the active region of a 400 nm pump LED makes it easier for carriers to escape, and therefore decreases the high-temperature performance. Most materials have a significantly larger 65 absorption at 400 nm than at 445 nm (this is the case for high-reflectivity metals such as Al and Ag which are com- 4 monly used in LEDs, of silicones, of some substrates such as GaN or SiC, and of Au wirebonds.) which decreases the light-extraction efficiency. - 2. There has not been focused development on phosphors for use with 380-430 nm excitation light. This places the performance levels of the available phosphor materials behind the state-of-the-art phosphor performance enjoyed by LED manufacturers employing 450 nm pump LEDs for use with materials such as $\rm Y_3Al_5O_{12}:Ce^{3+}$ (YAG-yellow) and CaAlSiN:Eu²+ (red) which have had both time and pressure applied to their improvements. - 3. Due to this offset in state-of-the-art phosphor material performance, not all of the available phosphors can be used in high performance LED devices. Prime examples are blue phosphors which are not suitable for use with all chip-emission wavelengths. The absorption characteristics of two blue-emitting phosphors are shown in FIG. 2. Vertical lines indicate the position of a 405 nm and 420 nm emitter relative to these two phosphor absorption curves. Though the two materials absorption strengths are similar at 405 nm, they are clearly not the same at 420 nm. This reduction in absorption strength of the first phosphor materially affects the device performance with longer-wavelength emitters. This change in performance is shown in FIG. 3. This invention provides white LED light sources with high performance. Among other things, the invention provides a new approach to high-CRI white LEDs. For example, the white LED light source comprises pump LED(s) whose peak emission is in the range of about 405 nm to 430 nm and a system of three or more phosphors (such as blue, green, and red). A substantially white spectrum is produced by the phosphor emission. One advantage of the invention is that a pump LED in the range of about 405 nm to 430 nm can display a very high IQE at high carrier density (similar to a 400 nm pump LED)
due to the moderate strain and piezoelectric fields. The carrier confinement in the active region, on the other hand, is significantly improved so that the high-temperature performance is not compromised. The lower band gap compared to a 400 nm LED also enables a lower forward voltage. Therefore, the range of about 405 nm to 430 nm is optimal from the standpoint of pump LED performance. High IQE performance for such LEDs (at a current density of 100 A/cm² and a junction temperature 100 C.) can be better than 70% and even exceed 90%. This is to be compared to about 65% for state-of-the art LEDs emitting at 440 nm as described in the prior art. In addition, optical absorption in most materials is significantly reduced between 400 nm and about 405 nm to 430 nm, yielding overall larger light-extraction efficiency. Also, as explained above, the use of three or more phosphors to generate white light is advantageous in terms of color control and process stability. Blue phosphors are available with strong absorption in the range of about 405 nm to 430 nm, and with high quantum efficiency. Some examples of blue-emitting phosphors with strong absorption in this wavelength range are BaMgAl₁₀O17:Eu²⁺, Sr₁₀(PO₄)₆Cl₂:E, LaAl(Si_{6-z}Al₂) $N_{10-z}O_z$:Ce³⁺, a-Sialon:Ce³⁺, (Y,La)—Si—O—N:Ce³⁺, Gd_{1-x}Sr_{2+x}+AlO_{5-x}F_x:Ce³⁺. The Stokes loss is also mitigated in comparison to a 400 nm pump LED. FIG. 4 illustrates an embodiment of the invention, where an LED whose peak emission is in the range of about 405 nm to 430 nm pumps blue, red, and green phosphors. As shown in FIG. 4, a pump LED source is provided on a substrate or a submount. For example, the pump LED source emits radiation at a wavelength of about 405 nm to 430 nm. The pump LED source is disposed in a mix of phosphor materials, which absorbs the radiation emitted by the LED source. The phos- phor materials are excited by the pump LED and emit blue, green, and red light. In a preferred embodiment, the mix of phosphors is specifically adapted to emit white light, by the combination of emissions from the phosphors. The mix of phosphor materials is disposed in an encapsulant which is substantially transparent to both pump-LED-source and phosphor-emitted light. Depending on the application, the encapsulant may include various types of materials. In a preferred embodiment, the encapsulant is specifically configured to improve light-extraction efficiency. For example, the encapsulant material can comprise polymeric species. In a preferred embodiment, the pump LED source emits radiation in the wavelength range from about 405 nm to 430 nm and pumps three phosphors (e.g., a blue, a green, and a red phosphor) that are mixed together, and the phosphor mix converts a substantial fraction of the pump LED source light to longer-wavelength light. Of course, the phosphor mix may contain additional phosphors, e.g. an amber phosphor can be added to increase CRI. In various embodiments, the wavelength emitted by the LED changes due to changes in temperature. For example, a pump LED emits radiation at a wavelength of about 398 nm at room temperature. When temperature increases to about 120° C., the pump LED emits radiation about 405 nm. Typically, high current and/or high temperature are the main causes of wavelength shift. For example, for each increase of 23° C. in operating temperature, the wavelength of the radiation emitted by the pump LED increases by 1 nm. The encapsulant and the phosphor material used in various embodiments of the invention can compensate for the wavelength shift FIG. 5 illustrates carrier spreading in multi-quantum well (MQW) LEDs emitting at 450 nm (left) and 420 nm (right). In a 450 nm-emitting scheme, the energy barriers are larger, 35 which can impede spreading of the holes between the quantum wells. As shown, electrons are more or less spread evenly, while holes are not. In contrast, in a 420 nm-emitting scheme, the energy barriers are lower and hole spreading is thus improved, thereby increasing the effective volume of the 40 active region. Better optimized carrier spreading is achieved by embodiments of the present invention. More specifically, carrier confinement can be reduced compared to that a 450 nm pump LED, which enables better carrier spreading in a MQW system. Therefore, one can employ a thick active region (for 45 instance, more than 10 nm thick or more than 50 nm thick) and inject carriers efficiently across this active region, as illustrated in FIG. 5. FIG. 6 illustrates an embodiment of the invention where five pump LEDs are arranged in an array. In this implemen- 50 tation the LEDs emit at about 405 nm to 430 nm. The LEDs are disposed a phosphor mix that is specifically made for color conversion. As described above, the phosphor mix comprises phosphor materials which have a high absorption of the light emitted by the pump LEDs. For example, the phosphor 55 mix comprises one or more of the following materials: $\begin{array}{lll} BaMgAl_{10}^{1}O17:Eu^{2+}, \ Sr_{10}(PO_{4})_{6}Cl_{2}:E, \ LaAl(Si_{6-z}Al_{z})N_{10-z}\\ O_{z}:Ce^{3+}, \ a-Sialon:Ce^{3+}, \ (Y,La)-Si-O-N:Ce^{3+}, \ Gd_{1-x} \end{array}$ $Sr_{2+x}AlO_{5-x}F_x$: Ce^{3+} . The phosphor mix is prepared for converting the light from the pump LEDs to light in other colors, 60 such as red, green, and/or blue. When the light in different colors is combined, preferably substantially white light is produced. The mix of phosphor materials is disposed in an encapsulant, which is substantially transparent to both pump-LED and phosphor-emitted light. In a preferred embodiment, 65 the encapsulant is specifically configured to improve light extraction efficiency and is formed from polymeric species. 6 FIG. 7 illustrates an embodiment of the invention where the pump LEDs are arranged in an array, and the phosphor composition is varied spatially in a pixilated configuration. Here, separate spatial regions perform conversion to red, green, and blue light. As shown in FIG. 7, five LEDs are arranged in an array configured to pump phosphor materials. Single-color phosphor materials in different colors absorb radiation emitted by the LEDs and re-emit light in a color associated with the phosphor material. The phosphor materials are arranged in a pixelated fashion over the LEDs. The pixelated pattern is specifically created to create a mix of emissions whose combination produces light that is substantially white in color. In a preferred embodiment, the LEDs emit radiation in substantially the same color (e.g., about 405 nm to 430 nm in wavelength), and the radiation from the LEDs pumps the single-color phosphor materials that are in different spatial locations. In return, the colored phosphor materials emit colored light. For example, the phosphor materials, as shown in FIG. 7, emit respectively red, green, and blue light. In the configuration shown in FIG. 7, the type of pump LEDs and/or the phosphors can be varied across the array based on the color needed and the type of LEDs used. FIG. 8 illustrates an embodiment of the invention where the pump LEDs are arranged in an array, and two LED emission wavelengths are employed. Short-wavelength LEDs (about 405 nm to 430 nm) pump red and green phosphors, while longer-wavelength LEDs (440 nm to 460 nm) emit blue light. As shown in FIG. 8, five LED devices form an LED array positioned on a substrate or submount. More specifically, the LED device in the middle emits blue light (e.g., wavelength of about 440 nm to 460 nm), while the other LED devices emit radiation in substantially violet (e.g., about 405 nm to 430 nm) wavelength range. The violet LED devices are disposed in colored phosphor materials, where the LED devices pump the phosphor material which emits a colored light, e.g. red light. Similarly, the green phosphor material, upon absorbing substantially violet radiation, emits green light. The blue LED device is not disposed within a phosphor material, and as a result the blue light generated by the blue LED devices is emitted directly. Depending on the application, the LEDs can be arranged in array geometry using several pump LEDs in combination with blue or red LEDs that are not configured to pump phosphor material. It is to be appreciated that the arrangement of LEDs as shown in FIG. 8 can help reduce light absorption. For example, inter-die absorption is reduced at about 405 nm to 430 nm relative to 400 nm (because of the lower substrate absorption), which is an additional advantage of using a longer wavelength pump LED. Different arrangements of phosphor materials and LED devices enable different light colors to be obtained. In a preferred embodiment, the LED devices are grown on a non-polar or semi-polar substrate. In certain embodiments, the LED devices can be grown on a low-dislocation-density substrate ($<1\times10^7$ dislocations/cm²) to enable reliable operation at high current density and high temperature. Wavelength conversion materials can be ceramic or semiconductor particle phosphors, ceramic or semiconductor plate phosphors, organic or inorganic down converters, up converters (anti-stokes), nano-particles and other materials which provide wavelength conversion. Some examples are listed below ``` \begin{array}{l} (Sr_{n},Ca_{1-n})_{10}(PO_{4})_{6}*B_{2}O_{3}:Eu^{2+} \ (wherein\ 0\leq n\leq 1) \\ (Ba,Sr,Ca)_{5}(PO_{4})_{3}(Cl,F,Br,OH):Eu^{2+},Mn^{2+} \\ (Ba,Sr,Ca)BPO_{5}:Eu^{2+},Mn^{2+} \\ Sr_{2}Si_{3}O_{8}*2SrCl_{2}:Eu^{2+} \\ (Ca,Sr,Ba)_{3}MgSi_{2}O_{8}:Eu^{2+},Mn^{2+} \end{array} ``` BaAl₈O₁₃:Eu²⁺ $2 SrO * 0.84 P_2 O_5 * 0.16 B_2 O_3 : Eu^{2+}$ (Ba,Sr,Ca)MgAl₁₀O₁₇:Eu²⁺,Mn²⁺ $K_2SiF_6:Mn^{4+}$ (Ba,Sr,Ca)Al2O4:Eu2+ (Y,Gd,Lu,Sc,La)BO₃:Ce³⁺,Tb³⁺ (Ba,Sr,Ca)₂(Mg,Zn)Si₂O₇:Eu²⁺ $(\mathsf{Mg},\!\mathsf{Ca},\!\mathsf{Sr},\!\mathsf{Ba},\!\mathsf{Zn})_2\mathsf{Si}_{1-x}^{}\mathsf{O}_{4-2x}\!:\!\mathsf{Eu}^{2+}\,(\mathsf{wherein}\;0\!\leq\!x\!\leq\!0.2)$ (Sr,Ca,Ba)(Al,Ga)₂S₄:Eu² ${\rm
(Ca,Sr)_8(Mg,Zn)(SiO_4)_4Cl_2:Eu^{2+},Mn^{2+}}$ Na₂Gd₂B₂O₇:Ce³⁺,Tb³⁺ (Sr,Ca,Ba,Mg,Zn)₂P₂O₇:Eu²⁺,Mn²⁺ (Gd,Y,Lu,La)2O3:Eu3+,Bi3+ (Gd,Y,Lu,La)2O2S:Eu3+,Bi3+ (Gd,Y,Lu,La)VO₄:Eu³⁺,Bi³⁺ $(Ca,Sr)S:Eu^{2+},Ce^{3+}$ $(Y,Gd,Tb,La,Sm,Pr,Lu)_3(Sc,Al,Ga)_{5-n}O_{12-3/2n}:Ce^{3+}$ (wherein $0 \le n \le 0.5$) ZnS:Cu+,Cl- $(Y,Lu,Th)_3Al_5O_{12}:Ce^{3+}$ ZnS:Cu+,Al3+ ZnS:Ag+,Al3+ ZnS:Ag+,Cl-(Ca,Sr) Ga₂S₄: Eu²⁺ SrY₂S₄:Eu²⁺ CaLa₂S₄:Ce³⁺ $(Ba,Sr,Ca)MgP_2O_7:Eu^{2+},Mn^{2+}$ $(Y,Lu)_2WO_6:Eu^{3+},Mo^{6+}$ CaWO_₄ $(Y,\!Gd,\!La)_2O_2S:\!Eu^{3+}$ (Y,Gd,La)2O3:Eu3+ $(Ba,Sr,Ca)_nSi_nN_n:Eu^{2+}$ (where 2n+4=3n) Ca₃(SiO₄)Cl₂:Eu² $(Y,Lu,Gd)_{2-n}Ca_nSi_4N_{6+n}C_{1-n}:Ce^{3+}, \text{ (wherein } 0 \le n \le 0.5)$ (Lu,Ca,Li,Mg,Y) alpha-SiAION doped with Eu2+ and/or Ce³⁺ (Ca,Sr,Ba)SiO₂N₂:Eu²⁺,Ce³⁺ (Sr,Ca)AlSiN₃:Eu²⁺ CaAlSi(ON)₃:Eu²⁺ Sr₁₀(PO₄)₆Cl₂:Eu²⁺ (BaSi)O₁₂N₂:Eu²⁺ SrSi₂(O,Cl)₂N₂:Eu²⁺ $(\text{Ba,Sr)Si}_2(\bar{\text{O}},\!\bar{\text{Cl}})_2\text{N}_2\!:\!\text{Eu}^{2+}$ LiM₂O₈:Eu³⁺ where M=(W or Mo) In the list above, it is understood that when a phosphor has two or more dopant ions (i.e. those ions following the colon in the above phosphors), this means that the phosphor has at least one (but not necessarily all) of those dopant ions within the material. That is, as understood by those skilled in the art, 50 this type of notation means that the phosphor can include any or all of those specified ions as dopants in the formulation. In certain embodiments, quantum-dot-based phosphors are used for color conversion purposes. Quantum dot materials are a family of semiconductor and rare earth doped oxide 55 nanocrystals whose size and chemistry determine their luminescent characteristics. Typical chemistries for the semiconductor quantum dots include well known (ZnxCd1-x) Se[x=0...1], (Znx, Cd1-x)Se[x=0.1], Al(AsxP1-x) [x=0...1], 60 In(AsxP1-x) [x=0...1], (AlxGa1-x)Sb[x=0...1], (Hgx, Cd1-x)Te[x=0...1] zincblende semiconductor crystal structures. Published examples of rare-earth doped oxide nanocrystals include Y2O3:Sm3+, (Y,Gd)2O3:Eu3+, Y2O3:Bi, Y2O3:Tb, Gd2SiO5:Ce, Y2SiO5:Ce, Lu2SiO5:Ce, Y3Al5) 65 12:Ce but should not exclude other simple oxides or orthosilicates. 8 In certain embodiments, the present invention provides a two-phosphor violet pumped white LED, which can be used for illumination. In a specific embodiment, a cyan phosphor and an orange phosphor are used with violet-pumped LED chips. For example, violet chips emitting radiation at wavelength of about 400-440 nm are provided. In this configuration, the emission of the two phosphors substantially determine the chromaticity and color quality of the white light. For example, color is determined primarily by the mix of two phosphors, and pump light leakage is typically minimal and not very eye-sensitive. This approach combines the advantages of reduced phosphor complexity and cost with the simplified color tuning of a two-phosphor system. Moreover, the low eye sensitivity of the violet pump ensures that color targeting in manufacturing with high yield is provided, unlike the case for blue-pumped systems in which case tight control over blue light leakage is necessary for maintaining tight control over chromaticity spread in high-volume manufacturing FIG. 9 is a diagram illustrating the emission spectrum of a 20 two-phosphor violet pumped white LED. In this example, a cyan phosphor G1758TM and an orange phosphor O6040TM from Internatix Corporation are combined and pumped by a ~420 nm emitting LED. It is to be appreciated that other types of cyan and orange phosphor can be used as well. Other 25 phosphor combinations and other choices of pump emission wavelength in such a configuration are possible. In FIG. 9, the violet pump LED leakage is varied +/-20% relative to an absolute level of 5% leakage. For all three cases, the color rendering index (CRI) is at about 83 at a CCT of approximately 2700K. The variation in chromaticity between the three spectra is very small, with the total deviation from the Planckian at less than 0.004 in terms of u', v'. The lumen efficacy is at about 301-305 lm/Wopt. One of the benefits is that the configuration uses long wavelength pump chips (e.g., in this case 420 nm), which increases light extraction efficiency and package efficiency, reduces forward voltage and Stokes loss, compared to shorter wavelength pump LEDs. In addition, by avoiding blue phosphor, this configuration removes one component in loss in efficiency, reduces overall phosphor loading, and reduces cost and complexity. While the above is a full description of the specific embodiments, various modifications, alternative constructions, and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended to claims. What is claimed is: - 1. An optical device comprising: - a mounting member; - at least one light emitting diode (LED) provided overlying a portion of the mounting member; the at least one LED including a gallium and nitrogen containing substrate having: - a surface region characterized by a polar crystallographic orientation and a dislocation density less than 1×10⁷ dislocations/cm²; - a junction region comprising an active region, the active region being configured to emit electromagnetic radiation within a range from 405 to 430 nanometers; and - a first electrical contact region and a second electrical contact region coupled to the junction region to supply electrical current capable of causing the active region to emit the electromagnetic radiation; and - a mixture of phosphor materials including a first phosphor material, a second phosphor material, and a third phosphor material within a binder material, the mixture of phosphor materials disposed within a vicinity of the at 9 least one LED and configured to interact with the electromagnetic radiation to substantially convert the electromagnetic radiation within the wavelength range from 405 nm to 430 nm to wavelengths within a range from 440 nm to 650 nm: wherein the first phosphor material comprises a blue phosphor characterized by peak absorption in a wavelength range from 405 nm to 430 nm and has an internal quantum efficiency of at least 70%; and wherein the optical device emits substantially white light. - 2. The device of claim 1 wherein the gallium and nitrogen containing substrate is bulk GaN characterized by a non-polar orientation or a semi-polar orientation. - 3. The device of claim 1 wherein the at least one LED has $_{15}$ a lumen per watt efficiency of at least 50%. - **4**. The device of claim **1** wherein the at least one LED comprises a plurality of LEDs in an array configuration. - 5. The device of claim 4 wherein the wavelength of the plurality of LEDs varies across the array. - **6**. The device of claim **1** wherein the first phosphor material comprises a blue phosphor with an absorption coefficient in the range from 1 to 40 cm⁻¹. - 7. The device of claim 1 wherein the blue phosphor is characterized by a peak emission wavelength in the range 25 between 440 nm and 480 nm and a spectral FWHM of at least 10 nm. - **8**. The device of claim **1** wherein the blue phosphor is characterized by an absorption coefficient in the range from 1 cm⁻¹ to 40 cm⁻¹ and a peak emission wavelength in the range 30 between 440 nm and 480 nm, and a spectral FWHM greater than 10 nm. - 9. The device of claim 1 wherein - the blue phosphor is selected from \$BaMgAl_{10}O_{17}:Eu^{2+},\$\$\$Sr_2P_2O_7:Eu^{2+},\$\$Sr_6P_5BO_{20}:Eu^{2+},\$\$(SrCa)_2B_5O_9Cl:Eu^{2+},\$\$\$Sr_5Cl(PO_4)_3:Eu^{2+},\$\$Ca_2P_2O_7:Eu^{2+},\$\$ZnS:Ag,Cl,\$\$Sr_{10}\$\$(PO_4)_6Cl_2:Eu^{2+},\$\$LaAl(Si_{6-z}Al_z)N_{10-z}O_z:Ce^{3+},\$\$a-Sialon:\$\$Ce^{3+},\$\$(Y,La)—Si—O—N:Ce^{3+},\$\$Gd_{1-x}Sr^{2+}_{2+x}AlO_{5-x}F_x:\$\$Ce^{3+},\$ and a combination of any of the foregoing; and} - the blue phosphor is characterized by a peak absorption at 40 a wavelength between 405 nm and 430 nm, and an absorption not less than 50% of the peak absorption at wavelengths from 405 nm to 430 nm. - 10. The device of claim 1 wherein the mixture of phosphor materials is balanced to produce radiation on or near the 45 Planckian curve (du'v'<0.01) with average color rendering of at least 75. - 11. The device of claim 1 wherein, the electromagnetic radiation from the active region is substantially free from wavelengths less than 405 nanometers and greater than 440 50 nanometers. - 12. The device of claim 1 where the mixture of phosphors varies in either a horizontal or a vertical direction of the device. - 13. The device of claim 1 wherein the gallium and nitrogen 55 containing substrate is bulk GaN characterized by a polar orientation. - 14. The device of claim 1, wherein, - the phosphor mix comprises a phosphor selected from $BaMgAl_{10}O_{17}:Eu^{2+}$, $Sr_{10}(PO_4)_6C_{12}:Eu^{2+}$, $LaAl(Si_{6-z}Al_zO)N_{10-z}O_z:Ce^{3+}$, a-Sialon: Ce^{3+} , $(Y,La)SiON:Ce^{3+}$, $Gd_{1-x}Sr_{2+x}AlO_{5-x}F_x:Ce^{3+}$, and a combination of any of the foregoing, and - the blue phosphor is characterized by a peak absorption at a wavelength between 405 nm and 430 nm, and an absorption not less than 50% of the peak absorption at wavelengths from 405 nm to 430 nm. 10 - 15. The device of claim 1, wherein the at least one LED is configured to maintain an internal quantum efficiency of at least 70% at a current density of at least 100 A/cm^2 and a junction temperature of at least 100° C. - 16. The device of claim 1, wherein the luminescence intensity is within about $\pm 5\%$. - 17. The device of claim 1, wherein the blue phosphor has an absorption greater than 30.7% of the peak absorption in the wavelength range of 405 nm to 430 nm. - 18. The device of claim 17, wherein the blue phosphor has an absorption not less than 50% of the peak absorption in the wavelength range of 405 nm to 430 nm. - 19. An optical device comprising: - at least one light emitting diode
(LED) disposed over a portion of a mounting member; the at least one LED having a gallium and nitrogen containing substrate with a surface region, wherein the surface region has a dislocation density less than 1×10^7 dislocations/cm²; a junction region including an active region, the active region emitting electromagnetic radiation within a range from 405 nanometers to 430 nanometers; and a first electrical contact region and a second electrical contact region coupled to the junction region to supply electrical current to cause the active region to emit the electromagnetic radiation; - a color conversion material disposed near the at least one LED, wherein the color conversion material comprises a blue phosphor characterized by peak absorption in the wavelength range from 405 nm to 430 nm, an internal quantum efficiency of at least 70% in said wavelength range, - the active region is configured to emit the electromagnetic radiation within a range from 405 nanometers to 430 nanometers while reducing at least a piezoelectric field influence to cause the active region to output at least 100 Amps/centimeter² and to maintain an internal quantum efficiency of at least about 70%, and a temperature ranging from about 85° C. to about 150° C.; and wherein the electromagnetic radiation is substantially free from wavelengths less than 405 nanometers and greater than 440 nanometers; wherein, - leakage of the electromagnetic radiation from the color conversion material is from about 4% to about 6%; and the optical device emits substantially white light. - 20. The device of claim 19 wherein the gallium and nitrogen containing substrate is bulk GaN, the bulk GaN being selected from a semi-polar orientation, a non-polar orientation, and a polar orientation. - 21. The device of claim 19 wherein the gallium and nitrogen containing substrate is characterized by a dislocation density of less than 1E7 cm⁻². - 22. The device of claim 19 wherein the color conversion material comprises a first color conversion material and a second conversion material, the first color conversion material and the second color conversion material being associated with different wavelengths. - 23. The device of claim 19 wherein, - the blue phosphor is selected from BaMgAl $_{10}$ O $_{17}$:Eu $^{2+}$, Sr $_2$ P $_2$ O $_7$:Eu $^{2+}$, Sr $_6$ P $_5$ BO $_2$ 0:Eu $^{2+}$, (SrCa) $_2$ B $_5$ O $_9$ Cl:Eu $^{2+}$, Sr $_5$ Cl(PO $_4$) $_3$:Eu $^{2+}$, Ca $_2$ P $_2$ O $_7$:Eu $^{2+}$, ZnS:Ag,Cl, Sr $_{10}$ (PO $_4$) $_6$ Cl $_2$:Eu $^{2+}$, LaAl(Si $_{6z}$ Al $_z$)N $_{10z}$ O $_z$:Ce $^{3+}$, a-Sialon: Ce $^{3+}$, (Y,La)—Si—O—N:Ce $^{3+}$, and Gd $_{1x}$ Sr $_{2+x}$ AlO $_{5-x}$ F $_x$:Ce $^{3+}$, and a combination of any of the foregoing, and the blue phosphor is characterized by a peak absorption at - a wavelength between 405 nm and 430 nm, and an absorption not less than 50% of the peak absorption at wavelengths from 405 nm to 430 nm. 24. The device of claim 19, wherein the blue phosphor has an absorption greater than 30.7% of the peak absorption in the wavelength range of 405 nm to 430 nm. 25. The device of claim 24, wherein the blue phosphor has an absorption not less than 50% of the peak absorption in the 5 wavelength range of 405 nm to 430 nm. * * * * *